217 research outputs found

    Theoretical Study of Molecular Electronic and Rotational Coherences by High-Harmonic Generation

    Get PDF
    The detection of electron motion and electronic wavepacket dynamics is one of the core goals of attosecond science. Recently, choosing the nitric oxide (NO) molecule as an example, we have introduced and demonstrated a new experimental approach to measure coupled valence electronic and rotational wavepackets using high-harmonic generation (HHG) spectroscopy [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. A short outline of the theory to describe the combination of the pump and HHG probe process was published together with an extensive discussion of experimental results [Baykusheva et al., Faraday Discuss 171, 113 (2014)]. The comparison of theory and experiment showed good agreement on a quantitative level. Here, we present the generalized theory in detail, which is based on a generalized density matrix approach that describes the pump process and the subsequent probing of the wavepackets by a semiclassical quantitative rescattering approach. An in-depth analysis of the different Raman scattering contributions to the creation of the coupled rotational and electronic spin-orbit wavepackets is made. We present results for parallel and perpendicular linear polarizations of the pump and probe laser pulses. Furthermore, an analysis of the combined rotational-electronic density matrix in terms of irreducible components is presented, that facilitates interpretation of the results.Comment: 14 figure

    Music training alters the course of adolescent auditory development

    Get PDF
    Fundamental changes in brain structure and function during adolescence are well characterized, but the extent to which experience modulates adolescent neurodevelopment are not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pre-training) and again three years later. Here we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence, and demonstrate that in-school programs can engender these changes

    Hearing It Again and Again: On-Line Subcortical Plasticity in Humans

    Get PDF
    Background: Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody) interact with more global statistics (i.e., repetition of the melody). Methodology/Principal Findings: To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern. Conclusions/Significance: We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-tim

    The Potential Role of the cABR in Assessment and Management of Hearing Impairment

    Get PDF
    Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults

    Context-Dependent Encoding in the Human Auditory Brainstem Relates to Hearing Speech in Noise: Implications for Developmental Dyslexia

    Get PDF
    SummaryWe examined context-dependent encoding of speech in children with and without developmental dyslexia by measuring auditory brainstem responses to a speech syllable presented in a repetitive or variable context. Typically developing children showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context. In contrast, children with developmental dyslexia exhibited impairment in their ability to modify representation in predictable contexts. From a functional perspective, we found that the extent of context-dependent encoding in the auditory brainstem correlated positively with behavioral indices of speech perception in noise. The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior “tagging” of voice pitch, an important cue for segregating sound streams in background noise. The disruption of this mechanism contributes to a critical deficit in noise-exclusion, a hallmark symptom in developmental dyslexia

    On the P3P_3-hull number and infecting times of generalized Petersen graphs

    Full text link
    The P3P_3-hull number of a graph is the minimum cardinality of an infecting set of vertices that will eventually infect the entire graph under the rule that uninfected nodes become infected if two or more neighbors are infected. In this paper, we study the P3P_3-hull number for generalized Petersen graphs and a number of closely related graphs that arise from surgery or more generalized permutations. In addition, the number of components of the complement of an infecting set of minimum cardinality is calculated for the generalized Petersen graph and shown to always be 11 or 22. Moreover, infecting times for infecting sets of minimum cardinality are studied. Bounds are provided and complete information is given in special cases.Comment: 8 page

    Immunological and mass spectrometry-based approaches to determine thresholds of the mutagenic DNA adduct O 6 -methylguanine in vivo

    Get PDF
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. N-nitroso compounds are alkylating agents, which are widespread in our diet and the environment. They induce DNA alkylation adducts such as O 6 -methylguanine (O 6 -MeG), which is repaired by O 6 -methylguanine-DNA methyltransferase (MGMT). Persistent O 6 -MeG lesions have detrimental biological consequences like mutagenicity and cytotoxicity. Due to its pivotal role in the etiology of cancer and in cytotoxic cancer therapy, it is important to detect and quantify O 6 -MeG in biological specimens in a sensitive and accurate manner. Here, we used immunological approaches and established an ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) to monitor O 6 -MeG adducts. First, colorectal cancer (CRC) cells were treated with the methylating anticancer drug temozolomide (TMZ). Immunofluorescence microscopy and an immuno-slot blot assay, both based on an adduct-specific antibody, allowed for the semi-quantitative, dose-dependent assessment of O 6 -MeG in CRC cells. Using the highly sensitive and specific UPLC–MS/MS, TMZ-induced O 6 -MeG adducts were quantified in CRC cells and even in peripheral blood mononuclear cells exposed to clinically relevant TMZ doses. Furthermore, all methodologies were used to detect O 6 -MeG in wildtype (WT) and MGMT-deficient mice challenged with the carcinogen azoxymethane. UPLC–MS/MS measurements and dose–response modeling revealed a non-linear formation of hepatic and colonic O 6 -MeG adducts in WT, whereas linear O 6 -MeG formation without a threshold was observed in MGMT-deficient mice. Collectively, the UPLC–MS/MS analysis is highly sensitive and specific for O 6 -MeG, thereby allowing for the first time for the determination of a genotoxic threshold upon exposure to O 6 -methylating agents. We envision that this method will be instrumental to monitor the efficacy of methylating chemotherapy and to assess dietary exposures

    Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    Get PDF
    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills
    corecore